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EXECUTIVE SUMMARY

In engineering and scientific practice, the extraction of information from signals
usually involves spectral analysis, a process by which one determines how the energy of a
signal is distributed among various frequency bands. In the standard techniques of
spectral analysis the data are sampled at equispaced intervals of time. Accuracy and the
ability to measure high-frequency components are lost if the data are not sampled at a
sufficiently high rate, but the maximum attainable data sample rate is limited by the
presence of noise and other technical factors such as limitations on computer storage and
processing time. It has been speculated that some of these difficulties might be reduced
by the use of data-sampling schemes employing nonequispaced sampling, but the question
as to whether this is possible has not yet been settled.

This report is concerned with the spectral analysis of deterministic signals perturbed
by noise. The statistics of the noise are assumed to be given (as is often the case), and
the emphasis of the report is on the reduction of the deterministic component of the
errors in spectral measurement. We develop a new mathematical method which permits
one to express such errors as explicitly given functions of the sample points, and using
these results we show that equispaced sample points are not always optimal for spectral
measurement. Hence the question next arises as to whether or not any practical advantage
would be gained by the use of optimal sample-point sets rather than eauispaced sets when
the latter are nonoptimal. Since the errors in spectral measurements have been given as
explicit functions of the sample points, the resolution of this question has been reduced
to an ordinary problem in the calculus: the minimization of an explicitly given function
of N variables, Although this minimization problem is perfectly straightforward, we have
not as yet been able to obtain its solution,

iv
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OPTIMAL SPECTRAL ESTIMATES

1. DESCRIPTION OF THE PROBLEM AND THE RESULTS

1.1 Introduction . ...

This is a preliminary report describing a recent investigation of the problemn of ob-
taining information about the spectra of deterministic signals perturbed by noise. Given
data of the form fit) = s(t) + n(t) = signal + noise, the problem is to obtain information
about the spectrum 9(v) fs(t)e-ivt dt from the sampled data fit), f(t 2), ..., f'tz- in
the time domain [0, TI. We should emphasize that the problem is to obtain information
about the spectrum of the deterministic component of fit); the statistics of the noise-
n(t) will be assumed to be given. ............

We are interested in obtaining a theory which is applicable to highly oscjllatoi7 sig-
nals, and in which the errors in spectral estimates are described in terms of physicall
meaningful parameters.

There pre three related but distinct aspects to this general problem: the- detection,
resolution, and measurement of spectral components. We shall consider the latte~raspect
first.

1.2 The Problem of Measurement

The errors in spectral estimates consist of two components: a determinstiec Cora-
ponent (or quadrature error) which would be present even if noise were completely absent
and a stochastic component arising from the effects of noise. The emphasis of this report
is on the reduction of the deterministic component. ... . ... .

For the moment let us suppose that noise is completely absent. The problem-we
pose is to construct for each frequency v a linear filter f(t) - f/'t(v)-3ft.) -which
estimates the vth spectral component f(v). (We write a general linear filter in-thisaform
instead of Eff(t.) to avoid the inconvenient appearance of the complex conjugates f32,at a
later point in thediscussion.) To measure the efficiency of such a filter, we consider-the
set of all errors Ift() - fest(V)l normalized by a Sobolev-space norm which measures the
variation of f and is expressible in terms of signal energy and bandwidth. We then take
the supremum over the class of all functions f which have finite energy and finitebnd-:
width and thus obtain an expression for the quadrature error explicitly given as adunction
of the sample points t. and the "weights" t as well as the signal energy and bandwidth.

Iu is at this point that our analysis differs from the more traditional kind. 'In the-
classical theory of numerical quadrature the quadrature error is expressed in terms of
bounds on the kth order derivatives of f, parameters which have little physical significance
and whose use becomes especially dubious for highly oscillatory signals. . i;;

Manuscript submitted May 10, 1976.
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WILLIAM B. GORDON

Having expressed the quadrature error as an explicit function of the sample points
and weights, we can then, at least in principle, optimize (minimize) the error with respect
to these variables. In particular, we wish to determine if equispaced sample point sets
are always optimaL (Cf, Ref. 1, p. 33.)

It turns out that equispaced sample point sets are not always optimal. So we should
then consider the question as to whether any practical advantage would be gained by us-
ing estimates employing optimal sample-point sets when equispaced sets are nonoptimak
We have reduced the resolution of this question to a problem in the calculus - the
minimization of an explicit expression involving certain hyperbolic and trigonometric
functions evaluated at the sample points. Although this problem is perfectly straight-
forward, we have not as yet been able to solve it. (See Section 2 for details.

1.3 The Problem of Detection

In its deterministic version the problem is to construct for each frequency u a linear
filter f -+ hf3-f(t) with the property that

X10/fiM) >D. implies fj() =,#O- (I

where D. is a certain threshold value dependent on the weights Q, the sample points t>
and the signal parameters (energy and bandwidth). We wish to optimize this scheme in
the sense of making the inequality in (1.1) as weak as possible.

Now the reader might object that in the deterministic case one could detect a fre-
quency component f(v) merely by computing the integral f f(t)e-iVt dt. However the
algorithms for computing such integrals are filters of the type given above, and moreover
we have no right to assume that a filter which is optimal for the measurement of a
spectral component is also optimal for its detection.

It turns out that, at least for the classes of signals which we have so for considered,
a filter which is optimal for measurement is also optimal for detection. But it also turns
out that the smallest possible value for the threshold value D. is somewhat smaller than
the corresponding error bound for measurement.

1.4 The Effects of Noise on Measurement

We shall suppose that we are dealing with data records having some fired time span
T. When noise is absent, the errors in spectral estimates can be made arbitrarily small by
making the number of sample points N arbitrarily large. On the other hand, when noise
is present, one expects that the stochastic component of the error to remain above a cer-
tain level as N - °, This is because for data records having fixed length T, N can be
increased only by increasing the average sample rate, and when this rate is increased
the information contained in the stochastic part of the sampled data becomes more
redundant.

More specifically, the deterministic component of the error has the appearance of a
bias whose square is a nonhomogeneous polynominal in the weights Q and whose

2
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coefficients are functions of the sample points. The stochastic component is an rms error
whose square is a homogeneous polynominal in the weights 0. and whose coefficientisare
the autocorrelation of the noise evaluated at the sample points. One could effecCsome
kind of a tradeoff between these two kinds of errors, but such an analysis has not yet
been attempted.

This apparent limitation that noise imposes on the average sample rate lendswgeater
interest to the problem of determining whether the deterministic component f tlhererror
can be significantly reduced below the values obtained by equispaced samplinghen N
is small and equipspaced sample points are not optimal.

1.5 Resolution

There are two types of resolution phenomena: those which involve the efects-of
noise and those which do not. We shall also have to consider two classes of signas:
periodic and nonperiodic. As in the previous paragraph, we asume that we are ddiling
with a data record of fixed length T.

Periodic Case .. .

For purely deterministic periodic signals there is no resolution problem, The detec-
tion scheme (1.1) never yields a false detection, and the detection (and measuxet)) of
a spectral component with arbitrarily small amplitude can be effected by maki"g N'
sufficiently large.

..... ....... ... ..

Suppose now that noise is present. Then the detection scheme (1.1) wili40sombtimes
yield false detections when the noise causes the filter output to rise above the tlierbhold
value Dv . Similarly the noise will sometimes prevent the detection of a spectral com-fE 0
ponent when one is actually present. The probability of either of these occurrences will
depend in part on how strongly the filter responds to frequencies other thanhe fuency
to which it is matched. Now the spectrum of a periodic signal is discrete, and one can
redesign the detection filter so that it will have a zero response to any discrete set-of
frequencies, in particular, to those which are close to the frequency whose detection--is
desired. Such a "sidelobe suppression" can be made only at the expense of increasing
the threshold value D.. Also, as mentioned in the last paragraph, one should espeV that
the existence of noise will impose a limit on the number of sample points N whicican
be used with a record of fixed time span T.

Nonperiodic Case

In the nonperiodic. case there is a resolution problem even when noise is completely
absent. This is because what we are measuring is the "truncated" spectrum .. ....

T(} = I f(t)e-iPt dt, (1.2)
0

3
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WILLIAM B. GORDON

whereas what we really want is the "true" spectrum

AP,) _ J Atpe-'P dt- .'

From a purely mathematical point of view there is no way out of this difficulty, because
for finctinoins f in ctnnnrnl flhea fhnn+in n] vira nf f inn fha in1-ara nH r Ta TI nn " einr

mine its functional values anywhere else, As is well known, the spectrum f corresponds
(roughly) to the spectrum f smoothed (integrated) over a frequency band owidth I/[.

One can apply the results obtained in the periodic case to the nonperiodic case by
extending a function defined on the internal [0, T] to a periodic function. The fre-
quencies of the extended periodic function will be multiples of 1ff, and the Fourier
coefficients (squared) will correspond (roughly) to the amount of signal energy contained
in frequency bands of width lIT. The accuracy of the process improves as T increases.
If noise is nOV nfintnducnA +hen the same pheonnrnnni will nooitr A w das gnrihjid fr thf
periodic case.

Remark I.1. There is one important class of functions f for which the functional
values in any internal [0, T1, no matter how small, determine the values of f everywhere,
namely, the class of "band-limited" signals whose spectra are contained in some bounded
interval of v space. We have -not been able to extend our function analytic methods to
this class of functions, our difficulties in this regard being conceptual rather than compu-
tational. Note that a periodic function is band limited in this sense if it only has a finite
numher of nonzero Fouirier eoeffirients. Thus the sneetrum of a nurelvl deterministie
periodic signal can be solved for exactly with only a finite number of sample points. (See
Ref. 2.)

Remark 1.2. In many applied problems one is given a band-limited sigal with a
carrier frequency v. and "bandwidth" B0 - Such functions have the representation

V0+B/2

f(t) fJoe+1t dv.
ci-B,12

The error functions discussed in the succeeding sections are expressed in terms of another
kind of "bandwidth" B, which is the second moment of the spectrum about the axis v =
0. (See Section 2.2.) These two bandwidths are related by

B2 = 1,2 2 Bo0 0 B'

where 3 is a quantity which depends on the shape of the spectrum and is usually on the
order of unity. In practice, vvhen d -tlnc drrnrlc having a hialhi onar i fr ronnntir

signal processing is preceded by heterodyning which translates the signal spectrum from
Po to the origin v = O. One can therefore apply the results below to the heterodyned
signal, the bandwidth B now being identified with B.. More generally, one would expect
that an optimal filter would mimic the process of heterodyning, but we can prove this to
be the case only when P.0/N is small and under the assumption that equispaced sample
points are close to optimal.

4
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1.6 Historical Remarks

For deterministic signals the case v = 0 corresponds to ordinary numerical quad;rat'ure,
and Sobolev-space techniques have been applied to the problem of numerical quadr ture by
(not surprizingly) Sobolev and his students. The emphasis of their work has been bn-the
quadrature of functions defined on domains of dimension greater than 1 and 6onobtainMing
weights j3. which are optimal with respect to a given (not necessarily optimal) samploint
set and for which the corresponding quadrature formulas are exact on polynomialwha
given degree. For a bibliography on the subject the reader is referred to an expository;
article by Haber [41. This article also contains an account of some recent number theoreti-
cal treatments of the problem of numerical quadrature which have raised doubts concerning
the optimality of equispaced sample points. . . .. ...

2. THE ERROR FUNCTIONS FOR DETERMINISTIC SIGNALS . .. .. ...

2.1 Notation : .... .... ....

We shall adopt a convention whereby the time span over which a function f is defn ed
will be denoted by P is f is periodic and by T if f is nonperiodic. The number ofsample 
points will always be denoted by N, and the set of sample points will always be'-represented
by the sequencet= It1, t2 ...- tN} The N sample points t. will always be assumec-to- be 
distinct. .. . ..... :

All functions under discussion will be assumed to be complex valued (althoujghi of our
results apply equally well to vector-valued functions), and we shall write ..... ........

I Ifl 12 If(t) 12 ...C"' ...... (2.1)
O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. V..:. ... 

where £ is P or T depending on whether f is periodic or nonperiodic. The operation of
differentiation will be denoted by D, so that :: . ..... . :

.. ...:..:".::.:.:::' :::..:::......
Dfft} = f (t). f -,'; ' -(2.2)

Finally a general linear filter will hereafter be written in the form . . ...

N : 

N

L 137(tj) .........
j=1 1 :

instead of .....

IvJ~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. ...:.:.: ' '" . ::::: ...... .:

E gif~tt) ''' ....., ....''0 

to avoid the inconvient appearance of the complex conjugates Tat a later pioin:;t in, the
discussion.

5
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2.2 The Error Function Q,"(t, fi)

For each frequency v we wish to construct filters of the type

festI(=) L Qf(t), (2.3)

which estimate the Pth spectral component

fAv) (tgeAPt dt, (2.4)
0

where V is P or T as before. For P-periodic functions the only allowed frequencies are of
the form v = 27k/Pt k an integer.

To measure the efficiency of the filter (2.3), we define an error function Ql, =

Qet, {3) wby

Ft Qf~v) 14a~)[2 I
2~' f)=sup I,(2.5)

QV I If 112 + c2 | Df t2J

where c is a positive number (whose value will be set later) and the supremun is taken
over the class of all continuous functions f whose derivatives exist almost everywhere and
are square integrable. This class will be denoted by H1 , and it contains sawtoothlike
functions whose derivatives are undefined or discontinuous at certain points. We shall
presently show that H' can also be described as the class of all continuous functions with
finite bandwidth.

Since Q2 is defined as the supremum of the quantity in the brackets, we have the
inequality

p) - f,,(v)I2 , ([Lf[ + c2 IIDflj2)Q2 '(t, , (2.6)

which holds for all f in the class Ht . It can be shown that this inequality becomes an
equality at some functions f, so that (2.6) is in this sense the strongest possible inequality
for any given values of P, c s, and C.

We now wish to show that Q2 is the squared error ltO') - j.,t(p)[2 normaized by a
quantity which measures the variation of f and is expressible in termns of signa energy and
;iSiiiu Vulduwiull. IIn iutoskapZp-CwarUi JItJL nun us u ullelusilu Ut puwer twattsULM
I fjl1 is therefore the signal energy. For P-periodic functions one easily establishes that

h =nlg _ V J(V)I2 (2.7)
yk~ 1f jj( 2 V ) 1 2

where v varies over all the frequencies 2xk /P, k an integer. For nonperiodic functions
vanishing at the endpoints the relation is the same with X replaced by f. For nonperiodic
funciions not vanishing at the endpoints the relaijon is cumplicated by vhe addulton ol

6
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terms involving the values of f at the endpoints. For functions of class H1 (on ( 00° + °°))
these terms converge to 0 as T e os In any case the left-hand side of (2.7) is.. reXlted :to
the spectral spread about the axis V 0 and will be called the bandwidth B(f)of.:.:' So,
setting

IlDflI0
B9-(f) 11f112 ;;(2.8)

we write (2.6) in the form . i

If(^) -4fst(L)I2 < IjfIIj(1 + C2 B 2(fl)Q 02(tT. (2.9)

Remark 2.1. There is another type of "bandwidth" more commonly used which.
measures the spectral moment about a carrier frequency u0. See Remark 1,'2.-

2.3 The Error Function R, 0 (t)

The error function Q (t, () will be shown to be a nonhomogeneous quadratic poly-
nominal in the weights f3. RIence for any given v, c, and t there exists a unique otimal
value of R which minim itss f 2 We depfine

RP,Cft) =inf [QVICt, 9)] 2,0

so that (2.9) with optimal a becomes

if(V) - {pV12 < 11fl + c2B2 (fl]R. (t), (2.11)

this inequality being the strongest possible for given values of P, c, and t. .. -.. .

Remark 2.2. Since Q2Ve(t, P) is quadratic in A, the calculation of the optial: :
requires the inversion of the N-by-N coefficient matrix A of the homogeneous Part, The
matrix A is a function of t, and we have not been able to obtain closed-form expressions
for its inverse except in the case when t is an equispaced set of sample points. Indeed D
the major technical accomplishment of our work has been to devise a means ofdcalculating
Rp (t) without having to compute A-' or the optimal weights A. The methods, used
involve the calculus of variations and the theory of Sobolev spaces which hag:. been:. much
used in partial differential equations and differential geometry. (See e.g. Rt 5 and6.)
We present the results immediately below. The derivations will be given in: Ref,. 3.N:

The Result for Periodic Functions

For P-periodic functions there is no loss of generality in assuming that t1 :: =: 9). This
is because the P-periodic functions can be identified with the functions defined:: on a::
circle with perimeter P, and by rotating the circle one can make t1 correspond to any

7
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point. Alternatively, the P-periodic functions of class H1 can be identified Nvith func-
tions f on the interval [0, P1 with fO) - f(P), so that the P-periodic functions can be
considered as functions on the interval [0, Pi with the endpoints 0 and P identified.
Since we also assume that the N sample points are distinct, for P-periodic functions there
is no loss in generality in assuming that

n = t < t2 <c. < tN C<P. (.2

Atn = t +I - te 

- P-tn,

if 1 Cn <N-1,

if n = N. (2.13>

With this understanding our result is

N cosh k-2 ,) -cos(PAtn)

n=E1 sinh n) ti
Rh4 Pt) = 2c

1, t I+ c2 u2 (I +c2 p2)2

For P = 0, this reduces to

N

R2 ,jt) = P- 2c F'
n=1

(2.15.Ltanh ( j

The Result for Nonperiodic Functions

For the nonperiodic case we can assume that

O<tl <Ct2 <-<tN•<T* (2.16S

The sample-point set t may contain both, one, or none of the endpoints ( and T. For
exampte, t1 = 0 and tN < T corresponds to the case when t contains 0 but not T. Our
result in the nonperiodic case is

RX 1t) = T 2c -- cosh ('e - cos (,Atj
t1 c t22 (I + C2t2)2 n i (1 

c tI
+ V~@2c2 -1) tanh(Ž)

(1 + c2V 2 )2 ( 

sin Pvt
- 2ve

c osh KB

(2.17>
(Continued>

8
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fT-tN sinP(T-tN):. ..: ....
+ c 1) tanh( 2v .2.17)
(1 + _____2 T N):

where At, = tn4+ tn, In 1, ... , N - 1) as before. When v 0, the result reduces to

R2 '~~~~~~~~~~~~~~~~~~s Fth (..ilL)1 (L~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~A (2.18)~~~~~~~~~~~~~~............

0, (t) =2'o- 2c E Lanh \2-c ) c tanh - c tanh ( a 18)0 ~~ T ( 2c ( -f 
2.4 Optrinal Saaple-oinllt Sets

The starting point for this discussion is the inequality (2.11), which we: wishto make
as strong as possible by making the right-hand side as small as possible for given-values. of
signal energy (= lI If12) and bandwidth B.

For each fixed value of v and c there exists a t set te(c) which minimizes the right-
hand side of (2.11) for any given values of Ili Il and B. Obviously t,(c) does not'depend
on li/i and B, so that, fixing the value of v, we have reduced the right-hatnd aide'of
k4.11J) to cUA expression inW -wIhiI bi Jrty vP iauis c. t he 11in ILkL 0step III;n j-, is
to minimize this resulting expression with respect to c, and we shall denote tbis m-inimiz-
ing value of c by c M. In general cy may depend on B: c = C (B). We set t(B-= t(c( B)).

Summarizing: For each frequency v there exists "optimal" values of ac:=l(B) :;:;and
t = t(B) which minimize the right-hand side of (2.11) for given values of IitI1: and B.

These optimal values of c and t are not necessarily unique. (In the periodic., case
there exist a continuum of optimal sample-point sets t obtained by translations o a
,Aven poinnt set m-odulo P, Lae, by rotating -ihe circle non. which the PnearenAfr Ainn>innc

are defined.)

We shall say that any possible value of t<(B) is a strongly optimal. (SP -optima)
sample-point set for the frequency v and bandwidth B.

2.5 The Error Function L,(t)

In the discussion above we ought to allow the possibility that the optimal value of
c is given at c = o. Referring to (2.11), this motivates the definition . ..

LPAt) = lim [cRc(t)]. (2.19)

Hence, as c - a, the right-hand side of (2.11) converges to IIfIIgB2 (flL2(t). hat .about
the left-hand side? We have f4st (P) = p 3f(t ), where the weights ( are optimal for-.the
given values of c (and the other parameters). It can be shown that P converges 6to a eer-
tain value. say [3 . as c - Do. Setting 4 J(v) = 1itf(t.) in the limit- the ineaualitv (2A11)
at c = o becomes

9 .. ...... ........
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itO') -fe (7>p2 < i10i1B2 (t)-2(t). (2.0

We shall say that a value of t is optimal in the limit (is L optimal) for a given fre-
quency v if it minimizes L/(t).

An L-optimal set t is also S optimal only if the optimal value of c is given by c = 00,
If an L-optimal set is not also S optimal, then the right-hand side of (2.20) is greater than
the right-hand side of t2l11X with c riven the ontimal valuel Note also that the .L-ontimal
t sets depend only on P and not on B, whereas the S-optimal sets have an (at least
apparent) dependence on B which, as discussed in Section 2.4, arose from the (apparent)
dependence of the optimal value of c on B.

Explicit expressions for L. are easily obtained from (2.14) through (2.18>. Using
the same expressions for Atn as in Section 2.3, we get the following:

In the periodic case

2p N + 1 - eos H At

L2() = V _ 'L c RPAt ) (2.21>

At - = 0 this reduces to (cf. (2.15))

L2(t) = T (At,) 3 . (2.22)
n=1

In the nonperiodic case

- 2 N-1 ( (1-CospAt\ _ ('i _ 2

Fort' = 0 this reduces to

2 ! jv s+ 1

j + (At 3 + 2 s n _ (T-t) 3 (2.24>

&t THE PROBLEM OF MEASUREMENT

3.1 Some Consequences of Eqts. (2.14) Throughi (2.24)

The problem of determining tte S-optima sample-point sets t has been reduced t
the problem of minimizing the right-hand side of (2.11) with respect to the variables 
3.1 Soym where ies given by (2.14) or (2.1. Simlarly te problem of dete ing
the L-optimal sets t has been reduced to the problem of minimizing L,(t) with respect to

10
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t, where L. is given by (2.21) or (2.23). Although these problems are pet straight-
forward, we have not as yet been able to obtain their solution. Thus we are. 0 o yet able
to decide whether any practical advantage would be obtained by the use of opmal
sample-point sets over equispaced sets in those cases when the latter are. nono tal.
Another unresolved problem is to determine the optimal weights ft However:.,we-dbohave
the following partial results, which we state as propositions. The detailed.proofls .will
appear in Ref. 3.

Proposition 1. Fix N, c, and P (or T). Then there exists a sequence of frequencies
{v }, with v, -+°°, such that equispaced sample points are not optimal for' the gien
values of N, c, P (or T), and v - Pn.

Proposition 2. Equispaced sample point sets are L-optimal provided that N fib N%,
where N0o depends on v and P (or T). (The exact dependence o1 N0 On v and r:, asnLut
yet been determined.)

Proposition 3. For the special case v = 0, equispaced sample points are always
optimal, for any value of c. In particular: For the periodic case an optimal set, t is
given by tn = (n - 1) P/N, 0 < n < N. Any other t set obtained from this'one by tans-
lations modulo P is also optimal. In the nonperiodic case the only optimal t-set is given
by t= P/2N, to 1 - tn = PIN, 1 < n C N - 1 (so that T - tN = t1 - 0 P/-2N.V

Pnti ;Jo 1 lUv sh wonh~w or A neb la o;-4 -Ag A 1- AT ; A^ 1-.
D.-nnne~nn A ;_ 4+bn numb..hr Ar o.f coample nb+ oPAln T /n.,ar nnA

A I LJJI'C4L * T. A XA. UJ^t IA.4iiSL As L1 oailijl( jJJIIIUO, as 1~IJ Zip GMVI .A), L

(optimal) represent the values of L,(t) evaluated at t = equispaced set and optimal set
respectively. Then

L2 (optimal)/L2(equispaced) > 0.38. . (3.1)

Proposition 5. Fix the values of P and c. Then for equispaced sample-poin#t.sets the
values of the optimal weights Pk converge to their "naive" values

/3Z = N e>ivtk (3.2)

as N o* .

3.2 Discussion

The proof of Proposition 1 (in the periodic case) is based on an inspect9.aq..of. (2.14).
For equispaced sets one can choose a sequence of frequencies v such thatvcos. (v0t4>=
+1 for all Atn, and 1?2 will vary as (k 1/i-2) - (1 2 /P4), where h 1 and k 2 are. cartain con-
stants. On the other hand one can choose N - 1 of the Atn such that cos (vAtl,) - 1
for the same frequencies P, and for such a t set R 2 will vary as (k1 /V2 ) - (k3 /V3 ).

It is even more instructive to consider the error function Lp ..' .:n;'d , tli-iw.e(*
sets t. In the periodic case the only allowed frequencies are of th. *.t'a .. 2:;.'I'. i
integer, and setting Atn = P/N in (2.21) we see that when N divides e, L2 attaings.. its
largest possible value (= P/IP) at equispaced sample-point sets. In other worlad, it one:

11 :
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accepts L;,t) as a measure of efficiency of estimation, as might be suggested by (2.20>,
then equispaced sample-point sets are sometimes the worst possible. This phenomenon,
which occurs when N divides the frequency number F, corresponds to the "aihasing errors"
which are much discussed in the literature.

Recall that LV gives the best measure of efficiency only if the inequality (2.20) is
stronger than (2.11) for all finite values of the parameter c. If this were ever the case,
then Propnsifion A would imply that no nar.o+ nrnntinl nAvrn-QCra wrrnl hu no- 3L.
the use of optimal over equispaced sample-point sets.

The relations (2.11) and (2.20) give bounds on the absolute errors fv} - fest(~)h but
they cannot be used to obtain bounds on the relative errors f&-) - &"t,('/if( 4Y, since,
e.g., f(v) may be 0 when fest(V) is not 0. Another and perhaps better way of looking at
these results is to interpret them as imposing bounds on the energy lost (or gained) in
going from a signal f(t) to the "reconstituted" signal tesdt ) defined by

=ett E ttMe>

(oeriodic case) or

T

feat(t) = iItess)ei'Pt dt

(nonperiodic case). To see how this works, let us evaluate (2.20) at a set of N equispaced
sample points and take the periodic case. Then using (2.21) we get L 2 ( 1I1>P 3?N 2 as
N - . So 2.20 becomes

If~v) - feest(V)12 C If i2 B 2(f) . 2 -,. Niarge. (3.3)

Recall that i/112 has the dimensions of energy (joules), so that I/() - tes P2 has the
dimensions of joules per hertz and can be regarded as the amount of energy at the fre-
quency v which is lost or gained in forming 4,,t(t). The total amount of energy lost or
gained over all frequencies is obtained by summation (or integration). Since the right-
hand _ side of (i3) doe s n A VA._ an upper bunl to .th total ene.trgy i an

M1UMiue b1U Ut) \of Uoes; r1dr Con- :_at -t -_ -_prl 1_-1t bU 4f1- __- ---~yWtr~~URUX
be approximated by multiplying the right-hand side by B = bandwidth. Or to put the
matter another way, the fractional energy loss or gain is given by

WfRvl--f '(p)N2 -. ,n,3

We < 1-N2- . Nlarge. (3.4)

Hence the quantity (BP)3 IN2 measures the efficiency of equispaced sample points over
VI -- __ _ _ _ -1!T- h _0- fl_ CV¶ L.~- ~ n __ ~TlA~ -anifrequencies. Noste that in going from (2./;y tu to.S) we assumed that IEn =- vrptv

was small for each frequency u under consideration. Hence (3.4) is only valid when BP/N
is small.)

12
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4. THE PROBLEM OF DETECTION

4.1 First Detection Scheme

The problem here, in its deterministic setting, is to construct filters f -+ iXj3.f:1) with
the property that f(v) = 0 whenever the filter output exceeds a certain threshold value.
Our first detection scheme is based on the filters fest(v) and the use of (2.9)-to obtain

I4f5 1 (v}I > Qf (t, a) implies f(v) = O. (4.1)

All this relation says is that if ifest(l)i exceeds the largest possible error, then; fp), must
be nonzero.

4.2 Second Detection Scheme

We shall new develop a detection scheme in a more systematic fashion and-.show that
a set of weights (3 which are optimal for measurement are also optimal for detecin.: We
shall also show that the right-hand side of (4.1) is somewhat larger than necdessaryand
that spectral components f(v) of arbitrarily small energy can be detected by: maing the
number N of sample points sufficiently large. -. ..... .

Our starting point is the construction of a threshold values Da}0(t, (3) defined by

2 F IS:J~~~~~~~~~~~~~~~~~~~~~~~~~fit])l2 1 .. .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.......

D0t, f(3 = Avo [I ix l7(1 +i22 (42)::" '"

since D2 e is the supremum of the quantity in the brackets taken over all signas:whose
vth component vanishes, we haveii::":-:

D2 ] n2(ai) (mle f(.+0. . .""'::13

iifim i2 [1 + c2B2 (f] ipe (4: 0 I . ) -2

We now wish to optimize the detection scheme (4.3) with respect to t :0and,,,.t /. 

We first optimize with respect to:(3 as follows: For each fixed values .of ti. , ..... . an. d .t
we choose the value of a o which minimizes i t (tb r) subject to a constraint".which- .
normalizes the weights we by matching the filtr to the frequency v. Morehspeci ly we
shall require that.:::.::'"'::':: :.

> D2ei Vt, mle ()0$j~~~~~~~~~~~~~~~~~~~~~i~~~~~~~~~~~~~~tj~~~~~~~~~~ ~ .U. :: ... ...... ... ....
where u is a nonzero parameter. It turns out that the precise value of u seleceid-has Xno
effect on the detection scheme, because e will occur as a factor on both sides ci (4.3)
with (3 optimal. Hence we define to , as : :

13 "'V::;
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Dv,, (t) = inf [D. 0 (t, f)g3ei t7 = ,(4.5

anu we let p auuime taie optimal value 0f , so that

Dv, C(t) = DVe (t, (3*) (4.6>

Let y denote the weight vector which is optimal for measurement for given v, c, and t,
so that from Section 2.3 we have

PR, t) = Q£ (t, -y). (4.7>

USBIrS, turx;tcilu Olaly lL uC~nxuqaaa f11 he `l 'PLU o--y o.jSL-nrv a r 'nk ta. WtLGP

down explicit expressions for D2 (t, P() and D2 (t). It turns out that gf is a scalar multi-
ple of y, and our second detection scheme becomes

Y IS - > :>R2,(t) [- ( p+ ) -R,(t 4 impliesift)+O. (4.8)
If T_[1 + C2B2 ()] L P

INItLC ILUG tJ1:l lt~ 1)91g-l411;JU blUtt lI I,'*.O) lb tiIIUIt'I kli1t! 1LG 9P.L)J W1I-11 itLiEtI GULl Sb tULU b1ilLWiVU

possible value of Q2jt, (3), which is the right-hand side 'of the detection scheme (4.1>.
Recall also that the optimal weights Ay depend on P, c, and t. In particular, multiplying
(4.8) by c2 and taking the limit as c o we get

liX'vfli 2 > L2 (t) [1 -> L(t)1 implies fp) * 0, (4.9)

Having optimized the detection scheme with respect to the weights, we should now
consider the problem of optimizing with respect to the variables t (and c) for given values
of signal energy [ifI12 and bandwidth B. Rewriting (4.8) in the form

tXy fit -) 2> iifU[1+c 2B 2(flJR22 t[ P- 2 RZR (tj impliesf() *0,
(4.10)

one is tempted to choose those values of t and c which are optimal for measurement,
because these are the values of t and c which make [1 + c2 B2(fDR2j(t) minimum. How-
ever, as t and c vary, so do the weights y-, and we have the conceptua difficulty of de-
fining how the sensitivity of the detection scheme changes as both sides of (4.10) are
varied in this way.

On the other hand one can justify choosing the values of t and c to be those which
are U}GIIII lo1 tJs-CntLietiJ 4I Ur 1u'akJWU15. 5UUImL. P11 b131CU Wilit-L 1 f Uew% iI

for measurement will estimate f(v) at least as well as schemes based on equispaced

14
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sampling, and for equispaced t we know (Proposition 5, Section 3.1 that the left-hand
side of (4.10) is equal to square of the Riemann sum (P/N)reivtifQtj) plus a sniall quantity
that goes to 0 as N -* -. It can also be shown that this Riemann sum conversge uni-
formly to f(v) for all functions f with given signal energy and bandwidth. Moreover for
equispaced t we know that the right-hand side of (4.10) goes to 0 as 1/N2 A s.N.:: (cf.
Section 3.2). Hence we have the following proposition. . . ....

Proposition 4.1. For equispaced or optimal t, the left-hand side of (4.1.0).converges
uniformly to If(v) 12 as N - ¶ and the right-hand side goes to 0 at least as St'as i/N 2 .
Hence in the deterministic setting one can detect arbitrarily small values of If(vP) by mak-
ing N sufficiently large.

Remark 4.1. There does not appear to be any practical difference between the two
detection schemes, because the right-hand sides of (4.1) (with Qp c(t, ) = .Q {t 'Y) =
Rv c0 (t)) and (4.8) differ only by a term which varies as R4 (t), and R 6 (t) -is smll for
good values of t. However the theoretical development of the second detection scheme
provides more information about the optimal weights 'y, and it has the additional advantage
that it can be easily modified to serve the purpose of sidelobe cancellation, asi":ll,:be
shown in the next paragraph.

4.3 Resolution

We shall now confine our discussion to the periodic case and consider the-problem
of resolution. As was mentioned in Section 1, when noise is present one might:wish to
reduce or eliminate the response of a detection filter to frequencies P which are close to
the frequency v to which the filter is matched. Then, referring to (4.5), to ac'hieve this
result all one need do is to require that the "-optimal" weights p. satisfy the acdii4onai
constraints Xie"' tj = 0 as well as the constraint Xoei"ti = u. de calculations involved
in obtaining such a set of weights appears to be perfectly straightforward, though rather
laborious, and will be undertaken later.

5. REFERENCES

1. R.B. Blackman and J.W. Tukey, The Measurement of Power Spectra, Dover, New York,l q~~~~~~~~~~~~~~~~~q. 0 a::u:0:g00: | :~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. .... ....... 
2. H.S. Carslaw, Theory of Fourier's Series and Integrals, 3rd edition, Dover, New York,

pp. 323-328.

3. W.B. Gordon, "A Sobolev-Space Approach to Spectral Estimation," in preparaton.

4. S. Haber, "Numerical Evaluation of Multiple Integrals," SIAM Review 12 4.81t26
(1970)., , . .

5. R.S. Palais, Foundations of Global Non-Linear Analysis, Benjamin, New TYorkI,&968.

6. F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, ScotForesman,
Glenview, m., 1971.

15

:::: .. :


